Studies Towards the Total Synthesis of Taxoids Synthesis of an A-ring Building Unit

S.Arseniyadis*, D.V.Yashunsky, R.Pereira de Freitas, M.Muñoz Dorado, E.Toromanoff and P.Potier
Institut de Chimie des Substances Naturelles, CNRS, F-91 198 Gif-sur-Yvette(France)

Abstract

An efficient 11-step synthesis of the optically homogeneous bridged ring system 13, by a SmI 2 mediated reductive pinacol coupling is presented.

The spindle poisons (colchicine, vinblastine, taxol) have been extensively studied in our Institute under iheir chemical and pharmacological aspects for the past two decades ${ }^{1}$. Accordingly we developed a comprehensive synthetic program for taxol and its analogs ${ }^{2}$.

Since taxol 1 was first reported to be a promising anticancer drug several dozens of (as yet unaccomplished) synthetic approaches have been published ${ }^{3}$. As part of our ongoing studies we desire to develop an efficient synthesis of 2 that contains the ABC preformed framework of taxol (summarized in Scheme 1). Our interest in this synthesis has focused on the use of the known lower analogue 4^{4} of Wieland-Miescher ketone as an A-ring precursor. We disclose herein a short and efficient synthesis of 13 in its optically homogeneous form .

Scheme 1
The retrosynthetic analysis for synthesizing the bicyclo[3.2.1]octane unit involves two critical steps, the elaboration of the cis-fused hydrindane 6 and the carbon-carbon bond formation leading to the bridged system 12. The above mentioned considerations led us to develop a synthesis via the corresponding precursor 4. The interesting biological activities found among molecules containing the relatively rigid bicyclo[3.2.1]octane ring system ${ }^{5}$ have made the design
of synthetic routes to this ring system a challenging problem ${ }^{6}$. Retrosynthetic analysis showed that 12 could be obtained by an appropriate elaboration of 4 which secures the relative (and absolute) stereochemistry and can further be brought into taxol's A-ring using literature conditions. The key step of our synthetic scheme was the construction of the suitably functionalized bicyclo[3.2.1] octane ring system 12 either by a $\mathrm{C}-1 / \mathrm{C}-2$ or $\mathrm{C}-2 / \mathrm{C}-10$ intramolecular carbon-carbon bond formation. Scheme 2 summarizes the successful C-1/C-2 approach.

Scheme 2: 1) t-BuOK,t-BuOH, MeI, 2) $\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C} 10 \%$, benzene-heptane, r.t., 3) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, DCM , r.t., 4) $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$, pTosOH, benzene, $\left.\left.\Delta, 5\right) \mathrm{DMSO},(\mathrm{COCl})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM},-60^{\circ} \mathrm{C}, 6\right) \mathrm{TMSOTf}$, collidine, DCM, r.t., 6) $\mathrm{O}_{3}, \mathrm{DCM}, \mathrm{Py},-78^{\circ} \mathrm{C}$, then $\left.\left.\mathrm{PPh}_{3}, 8\right) \mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 9\right) 1 \mathrm{~N} \mathrm{HCl}-\mathrm{THF}$, r.t., 10) SmI , THF-MeOH, $-25^{\circ} \mathrm{C}$.

Thus, following Scheme 2, we prepared 5 bearing the C-15 geminal methyl group (by treatment with t-BuOK in t - BuOH at $0^{\circ} \mathrm{C}$ for 30 min followed by addition of an excess methyl iodide) the double bond being shifted to the five membered ring. Catalytic reduction in benzene-heptane $\left(\mathrm{H}_{2^{-}}\right.$ $\mathrm{Pd} / \mathrm{C}, 50 \mathrm{psi}, 30 \mathrm{~h}$) afforded a stereoisomeric mixture of cis and trans fused hydrindanones in 86% yield and a $32: 1$ ratio respectively 7 . The two compounds were easily separated by crystallization from pentane thus affording the optically pure 6^{8}. The cis ring junction was necessary to ensure the $C-1$ carbon center (taxane numbering) in its required absolute stereochemistry. Removal of the t-butyl protecting group was accomplished as described in reference $4\left(\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}, \mathrm{DCM}\right.$, r.t.) in 99% yield. Ketalization of the $\mathrm{C}-1$ carbonyl with ethylene glycol (benzene, pTosOH, Δ, Dean-Stark, 93%), followed by a Swern oxidation of the free
hydroxyl group ((COCl) $)_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM},-60^{\circ} \mathrm{C}$) furnished ketone-ketal $7(90 \%)$. Formation of its corresponding silyl enol ether 8 (TMSOTf, collidine, DCM, r.t., 93\%) and subsequent ozonolysis ($\mathrm{DCM}, \mathrm{Py},-78^{\circ} \mathrm{C}$), followed by work-up with triphenylphosphin and esterification with diazomethane afforded 9 ($\mathbf{9 3 \%}$) and 10 (60%). Acid catalyzed deketalization of 10 with 1 N HCl in THF at r.t. gave the desired keto-aldehyde 11 (96%). The acyloin 9 was smoothly converted to 10 by treatment with NaIO_{4} in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ at r.t. for 10 min . and esterification with diazomethane, increasing considerably the yield of the required keto-aldehyde 11. A number of reagents are known to promote pinacolic coupling reaction of ketones or aldehydes ${ }^{10}$. Substrate 11 was submitted to standard reductive cyclization conditions mediated by SmI_{2} (2.8 equivalents of $\mathrm{SmI}_{2}{ }^{11}$, 2.2 equiv of MeOH in THF at $-25^{\circ} \mathrm{C}$) ${ }^{12}$ and gave 12 in 91% yield ${ }^{13}$. The configurations at the newly formed asymmetric centers are assigned to be as in $\mathbf{1 2}$ by considering the compulsory bottom-side attack of C-1 carbonyl thus insuring the facial selectivity on $\mathrm{C}-1$. Experimental evidence favouring the structure 12 came from n.O.e studies $\mathbf{(4 0 0 M H z}$ NMR) and was in agreement with molecular mechanics calculations (Figure 1), using Still's Macromodel program, with Allinger's basic MM2 force field ${ }^{14}$. Swem oxidation of 12 (DMSO, $(\mathrm{COCl})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM},-60^{\circ} \mathrm{C}$ to r.t.) afforded the key intermediate $13(85 \%) .15$

Figure 1: The Lowest Energy Conformer of 13 (the arcs indicate observed nuclear Overhauser enhancements).
In summary, a concise synthesis of $\mathbf{1 3}$ was achieved over 11 steps. A salient feature of this scheme is that the stereocenter at $\mathrm{C}-1$ was constructed in a highly stereoselective manner and the utility of a new methodology for preparing taxol's A-ring was demonstrated. Further investigations of the conversion of $\mathbf{1 3}$ to a taxane framework via a B-seco taxane $\mathbf{3}$ are in progress.
Acknowledgements: The authors wish to thank Pr.G.Ourisson (Université Louis Pasteur, Strasbourg) for useful discussion, CAPES (Brazil) and Universidad de Granada (Spain) for fellowships to R.P. de Freitas and M.M. Dorado respectively.

References and Notes:

1- P.Potier, Chem.Soc.Reviews 113-119 (1992) and references cited therein.
2-.J.N.Denis, A.E.Greene, D.Guénard, F.Guéritte-Voegelein, L.Mangatal, and P.Potier, J.Am.Chem.Soc., 110, 5917-5919(1988).

3- Review articles: C.S.Swindell , Organic Oreparations and Procedures Int., 23, 465-543(1991); S.Blechert and D.Guenard, The Alkaloids, vol.39, 195-238(1990); R.A.Holton, Strategies and Tactics in Organic Synthesis, vol. 3, 165-197(1991).
4- S.Arseniyadis, R.Rodriguez, E.Cabrera, A.Thompson, and G.Ourisson, Tetrahedron, 47, 70457058(1991) and references cited therein.
5- Gibberellins : G.Stork, R.K.Boeckmann,Jr., D.F.Taber, W.C.Still, and J.Singh, J.Amer.Chem.Soc., 101, 7107-7109(1979);E.J.Corey and J.E.Munroe, ibid, 104, 6129-6130(1982); Helminthosporanes: E.Piers and H.P.Isenring, Can.J.Chem., 55, 1039-1044(1977).

6- J.Baker, M.J.Begley, M.Mellor, D.A.Otieno, and G.Pattenden, J.Chem.Soc.Perkin Trans I, 18931900(1983); A.S.Kende, B.Roth, and P.J.Sanfilippo, J.Amer.Chem.Soc., 104, 1784-1785(1982).
7- The trans hydrindanone was obtained in an approximately 3% yield. For cis and trans identities see: G.Stork and D.Kahne, J.Am.Chem.Soc., 105, 1072-1073(1983).

8-6 (cis-fused): IR (nujol): 2970, 2871, 1702, 1456, 1383, 1370, 1191, 1104, 1025; ${ }^{1}$ H-NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 1.003(3 \mathrm{H}, \mathrm{s}) ; 1.139(3 \mathrm{H}, \mathrm{s}) ; 1.167(9 \mathrm{H}, \mathrm{s}) ; 1.223(3 \mathrm{H}, \mathrm{s}) ; 1.48(2 \mathrm{H}, \mathrm{m}) ; 1.73(2 \mathrm{H}, \mathrm{m}) ; 1.85$ $(3 \mathrm{H}, \mathrm{m}) ; 2.24(1 \mathrm{H}, \mathrm{m}) ; 2.54(1 \mathrm{H}, \mathrm{m}) ; 3.51(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 23.5,24.6$, $26.6,26.7,28.7,32.0,32.1,34.7,42.2,47.1,54.8,72.6,79.4,217.1$; EIMS : $252\left(\mathrm{M}^{+}, 16\right), 196$ (100), 178 (10), 168 (22), $136(16), 125(18), 93(14), 71$ (24), $57(63) ;$ m.p.: $72-73^{\circ} \mathrm{C}$ (pentane); $[\alpha]_{D}+63$ ($c=1.0, \mathrm{CHCl}_{3}$); 6 (trans-fused): IR (film): 2970, 2930, 2871, 1702, 1456, 1383, 1370, $1191,1104,1025 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.01(3 \mathrm{H}, \mathrm{s}) ; 1.04(3 \mathrm{H}, \mathrm{s}) ; 1.09(3 \mathrm{H}, \mathrm{s}) ; 1.13(9 \mathrm{H}, \mathrm{s})$; $1.40-2.05$ ($7 \mathrm{H}, \mathrm{m}$); 2.31 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2.4,5.6,16.1$); 2.66 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.8,13.0,16.1$); 3.37 ($1 \mathrm{H}, \mathrm{dd}$ $\mathrm{J}=7.8,8.9$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.1,20.0,20.9,25.7,28.7,31.3,34.7,35.9,42.1$, 47.5, 53.3, 72.4, 80.0, 217.1; EIMS: 252 (M ${ }^{+}$. 14), 196 (34), 135 (26), 125 (39), 107 (20), 95 (17), $83(20), 81(20), 57(100) ;[\alpha]_{\mathrm{D}}+11\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
9- R.Clark and C.H.Heathcock, Tetrahedron Lett., 2027-2030(1974); R.D.Clark and C.H.Heathcock, J.Org.Chem., 41, 1396-1402(1976).

10- G.A.Molander, Chem.Rev., 92, 29-68(1992); B.E.Kahn, R.D.Rieke, ibid, 88, 733-745(1988); J.Nakayama, S.Yamaoka, M.Hoshino, Tetrahedron Lett., 28, 1799-1802(1987).

11- P.Girard, J.L.Namy, and H.Kagan, J.Amer.Chem.S.oc., 102, 2693-2698(1980); H.Kagan, N.J.Chim., 14, 453-460(1990).

12- The Sml_{2} in THF was added via a syringe pump over a period of $6 \mathrm{~h} .:$ G.A. Molander, C.Kenny, J.Org.Chem., 53, 2134-2136(1988).

13-12: IR (nujol): $3356,2951,1722 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.07(3 \mathrm{H}, \mathrm{s}) ; 1.16(3 \mathrm{H}, \mathrm{s}), 1.32$ ($3 \mathrm{H}, \mathrm{s}$); 1.37 (1 H, ddd, $\mathrm{J}=4.0,6.6,12.8$); 1.53 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1,14.9$); 1.58 ($1 \mathrm{H}, \mathrm{m}$); 1.97 ($1 \mathrm{H}, \mathrm{ddd}$, $\mathrm{J}=3.5,7.4,14.9$); $2.00(1 \mathrm{H}, \mathrm{m}) ; 2.07$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.8,13.6$); 2.12 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.4,7.3$); 2.63 ($1 \mathrm{H}, \mathrm{br} . \mathrm{s}$); $2.87(1 \mathrm{H}, \mathrm{br} . \mathrm{s}) ; 3.645(3 \mathrm{H}, \mathrm{s}) ; 3.83(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.6,8.1) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 21.6,25.1$, $25.6,27.5,30.4,37.1,43.9,46.8,49.6,51.9,73.4,78.6,178.0$; EIMS: 242 (M ${ }^{+}, 65$), 210 (100); HREIMS: for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}$ calc. 242.1518, found 242.1513; m.p.: $107-8^{\circ} \mathrm{C}$ (pentane-ether); [$\left.\alpha\right]_{D}-21$ ($\mathrm{c}=0.9, \mathrm{CHCl}_{3}$).
14- Molecular mechanics calculations were performed on a Silicon Graphics Work Station (4D25) with Macromodel v3.1 as software using Allinger's basic MM2 force field and Monte Carlo method to generate conformers: Still, W.C., Mohamadi, F., Richards, N.G.J., Guida, W.C., Lipton, M., Liskamp, R., Chang, G., Hendrickson, T., De Gunst, F., and Hasel, W., MacroModel V 3.1, Dept of Chemistry, Columbia University, New-York, N.Y. 10027.
15-13 : IR (nujol): 3436, 2977, 2937, 2904, 2851, 1742, 1722, 1456, 1377. ${ }^{1} \mathrm{H}$-NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 0.92(3 \mathrm{H}, \mathrm{s}) ; 1.33(3 \mathrm{H}, \mathrm{s}) ; 1.46(3 \mathrm{H}, \mathrm{s}) ; 1.48(1 \mathrm{H}, \mathrm{m}) ; 1.73(1 \mathrm{H}, \mathrm{m}) ; 1.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=19.5) ; 2.06$ ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.4,14.6$); 2.14 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.1,12.8$); $2.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6) ; 2.55$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.6,19.5$); 3.66 $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 20.9,25.4,25.6,27.8,29.4,39.8,42.9,46.4,46.9,52.1$, 82.6, 178.9, 218.8; EIMS: 240 , (M^{+}, 3), 212 (100), 180 (67); HREIMS for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}$, calc. 240.1361, found 240.1368.; m.p.: 71-2 ${ }^{\circ} \mathrm{C}$ (pentane); $[\alpha]_{\mathrm{D}}+43\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

